Infrared Spectra of Adsorbed Dinitrogen on Alkali Metal-promoted Transition Metal–Alumina Catalyst

By MOTOMU OH-KITA, KEN-ICHI AIKA, KAZUO URABE, and ATSUMU OZAKI*

(Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo)

Summary I.r. absorption peaks of dinitrogen on Ru-, Rh-, and Re-Al₂O₃ catalysts promoted by Na or K, in which form N₂ can readily react with H₂ to form NH₃, are observed at 2020-2040 cm⁻¹.

DINITROGEN can combine with some metallic surface or metal complexes to give adducts, most of which can be observed by i.r. methods. A large number of these have been reported since the earlier work by Eischens *et al.*¹ on metallic surfaces and Yamamoto *et al.*² on metal complexes. However, it has not been reported that i.r.-observable dinitrogen reacts with 'dihydrogen' to form ammonia, although the reaction of N_2 , combined in a metal complex, with protons of HCl to form NH_3 or N_2H_4 has been reported.³

We have reported that the addition of alkali metal to a transition-metal surface activates N_2 as shown by synthesis of ammonia and the isotopic equilibration of N_2 .⁴ We report the observation of the i.r. spectrum of N_2 adsorbed on the catalyst system at moderate temperatures (170–350 °C), and that subsequent reaction with H_2 at above 230 °C gives ammonia.

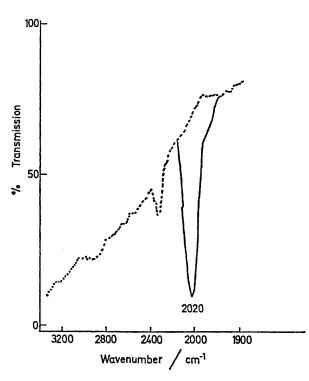


FIGURE. I.r. spectra of adsorbed dinitrogen on Ru-Al₂O₃-K at 25 °C: - - background; -----, N₂ adsorbed.

The catalyst sample was prepared by impregnating 200 mg of alumina (Alon G) with aqueous transition-metal chloride, and then drying the product, which was pressed and reduced with H₂ with the temperatures increasing from

100 to 350 °C to give the transition-metal (1% w/w)-Al₂O₃ catalyst. (Reduction of Re catalyst might be incomplete at 350 °C). Ca. 20 mg of K or Na was then adsorbed in vacuo on to the catalyst, which was treated with He at 350 °C for 3 h, and finally with N₂ (200 Torr) at 350 °C for 3 h. The i.r. spectrum was then recorded at room temperature using a JASCO A2 spectrometer.

After reaction between N₂ and the catalyst, new broad and intense absorption peaks appeared at 2020 cm⁻¹ for Ru-Al₂O₃-K, 2026-2030 cm⁻¹ for Ru-Al₂O₃-Na, 2040 cm⁻¹ for Rh-Al₂O₃-K, and 2024 cm⁻¹ for Re-Al₂O₃-K (see Figure for the N2-Ru-Al2O3-K system). Neither N2 adsorption nor a new i.r. peak was observed for any of the transition-metal-alumina or alkali metal-alumina systems. On increasing the temperature of the reaction of N₂ with the Ru-Al₂O₃-K catalyst from 100 °C, the new i.r. peak appeared after reaction at 170 °C for 3 h, and its intensity increased with temperature up to 350 °C.

While the peak for N2-Ru-Al2O3-K is close to the KN3 absorption (2041 cm⁻¹),⁵ the peak for N_2 -Ru-Al₂O₃-Na is quite different from that for NaN_3 (2128 cm⁻¹). Thus the adsorbed nitrogen active in the i.r. does not seem to be the alkali metal azide, but rather dinitrogen itself.

The N₂ is so stable as to be unaffected by evacuation for 1 day or by introduction of air at room temperature. At ca. 100 °C the i.r. absorption is almost the same as that at room temperature. However, the i.r. absorption decreases after treatment with He at 350 °C for 1 h, possibly because of N₂ desorption. After the introduction of H₂ at 350 °C for 5 h, the i.r. peak almost disappears and NH₃ is formed simultaneously (mass spectrometry). Ammonia reacts with Ru-Al₂O₃-K to yield a similar peak (2040 cm⁻¹).

(Received, 11th November 1974; Com. 1368.)

R. P. Eischens and J. Jacknow, Proc. 3rd Intern. Congr. on Catalysis, North Holland, Amsterdam 1964, p. 627.
A. Yamamoto, S. Kitazume, L. S. Pu, and S. Ikeda, *Chem. Comm.*, 1967, 79.
A. E. Shilov, A. K. Shilova, E. F. Krashina, and T. A. Vorontseva, *Chem. Comm.*, 1971, 1590; J. M. Manriquez and J. E. Bercaw,

J. Amer. Chem. Soc., 1974, 96, 6229. ⁴ A. Ozaki, K. Aika, and F. Hori, Bull. Chem. Soc. Japan, 1971, 44, 3216; K. Aika, H. Hori, and A. Ozaki, J. Catalysis, 1972, 27, 424; K. Urabe, K. Aika, and A. Ozaki, *ibid.*, 1974, 32, 108.

⁵ P. Gray and T. C. Waddington, Trans. Faraday Soc., 1957, 53, 901.